Milenkovic, Ivan

Link to this page

Authority KeyName Variants
265600f4-f955-46a9-9107-4d93512baae8
  • Milenkovic, Ivan (2)
Projects

Author's Bibliography

Silicon modifies leaf nutriome and improves growth of oak seedlings exposed to phosphorus deficiency and Phytophthora plurivora infection

Kostić, Igor; Nikolić, Nina; Milanovic, Slobodan; Milenkovic, Ivan; Pavlović, Jelena; Paravinja, Ana; Nikolic, Miroslav

(Frontiers, 2023)

TY  - JOUR
AU  - Kostić, Igor
AU  - Nikolić, Nina
AU  - Milanovic, Slobodan
AU  - Milenkovic, Ivan
AU  - Pavlović, Jelena
AU  - Paravinja, Ana
AU  - Nikolic, Miroslav
PY  - 2023
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2101
AB  - Beneficial effects of silicon (Si) on plants have primarily been studied in crop species under single stress. Moreover, nutrient acquisition-based responses to combination of biotic and abiotic stresses (a common situation in natural habitats) have rarely been reported, in particular in conjunction with soil amendments with Si. Pedunculate oak (Quercus robur L.), one of the ecologically and economically most important tree species in Europe, is facing a severe decline due to combined stresses, but also problems in assisted regeneration in nurseries. Here, we studied the effect of Si supply on the leaf nutriome, root traits and overall growth of 12-weeks-old oak seedlings exposed to abiotic stress [low phosphorus (P) supply], biotic stress (Phytophthora plurivora root infection), and their combination. The application of Si had the strongest ameliorative effect on growth, root health and root phenome under the most severe stress conditions (i.e., combination of P deficiency and P. plurivora root infection), where it differentially affected the uptake and leaf accumulation in 11 out of 13 analysed nutrients. Silicon supply tended to reverse the pattern of change of some, but not all, leaf nutrients affected by stresses: P, boron (B) and magnesium (Mg) under P deficiency, and P, B and sulphur (S) under pathogen attack, but also nickel (Ni) and molybdenum (Mo) under all three stresses. Surprisingly, Si affected some nutrients that were not changed by a particular stress itself and decreased leaf Mg levels under all the stresses. On the other hand, pathogen attack increased leaf accumulation of Si. This exploratory work presents the complexity of nutrient crosstalk under three stresses, and opens more questions about genetic networks that control plant physiological responses. Practically, we show a potential of Si application to improve P status and root health in oak seedlings, particularly in nurseries.
PB  - Frontiers
T2  - Frontiers in Plant Science
T1  - Silicon modifies leaf nutriome and improves growth of oak seedlings exposed to phosphorus deficiency and Phytophthora plurivora infection
IS  - 14
SP  - 1265782.
DO  - 10.3389/fpls.2023.1265782
ER  - 
@article{
author = "Kostić, Igor and Nikolić, Nina and Milanovic, Slobodan and Milenkovic, Ivan and Pavlović, Jelena and Paravinja, Ana and Nikolic, Miroslav",
year = "2023",
abstract = "Beneficial effects of silicon (Si) on plants have primarily been studied in crop species under single stress. Moreover, nutrient acquisition-based responses to combination of biotic and abiotic stresses (a common situation in natural habitats) have rarely been reported, in particular in conjunction with soil amendments with Si. Pedunculate oak (Quercus robur L.), one of the ecologically and economically most important tree species in Europe, is facing a severe decline due to combined stresses, but also problems in assisted regeneration in nurseries. Here, we studied the effect of Si supply on the leaf nutriome, root traits and overall growth of 12-weeks-old oak seedlings exposed to abiotic stress [low phosphorus (P) supply], biotic stress (Phytophthora plurivora root infection), and their combination. The application of Si had the strongest ameliorative effect on growth, root health and root phenome under the most severe stress conditions (i.e., combination of P deficiency and P. plurivora root infection), where it differentially affected the uptake and leaf accumulation in 11 out of 13 analysed nutrients. Silicon supply tended to reverse the pattern of change of some, but not all, leaf nutrients affected by stresses: P, boron (B) and magnesium (Mg) under P deficiency, and P, B and sulphur (S) under pathogen attack, but also nickel (Ni) and molybdenum (Mo) under all three stresses. Surprisingly, Si affected some nutrients that were not changed by a particular stress itself and decreased leaf Mg levels under all the stresses. On the other hand, pathogen attack increased leaf accumulation of Si. This exploratory work presents the complexity of nutrient crosstalk under three stresses, and opens more questions about genetic networks that control plant physiological responses. Practically, we show a potential of Si application to improve P status and root health in oak seedlings, particularly in nurseries.",
publisher = "Frontiers",
journal = "Frontiers in Plant Science",
title = "Silicon modifies leaf nutriome and improves growth of oak seedlings exposed to phosphorus deficiency and Phytophthora plurivora infection",
number = "14",
pages = "1265782.",
doi = "10.3389/fpls.2023.1265782"
}
Kostić, I., Nikolić, N., Milanovic, S., Milenkovic, I., Pavlović, J., Paravinja, A.,& Nikolic, M.. (2023). Silicon modifies leaf nutriome and improves growth of oak seedlings exposed to phosphorus deficiency and Phytophthora plurivora infection. in Frontiers in Plant Science
Frontiers.(14), 1265782..
https://doi.org/10.3389/fpls.2023.1265782
Kostić I, Nikolić N, Milanovic S, Milenkovic I, Pavlović J, Paravinja A, Nikolic M. Silicon modifies leaf nutriome and improves growth of oak seedlings exposed to phosphorus deficiency and Phytophthora plurivora infection. in Frontiers in Plant Science. 2023;(14):1265782..
doi:10.3389/fpls.2023.1265782 .
Kostić, Igor, Nikolić, Nina, Milanovic, Slobodan, Milenkovic, Ivan, Pavlović, Jelena, Paravinja, Ana, Nikolic, Miroslav, "Silicon modifies leaf nutriome and improves growth of oak seedlings exposed to phosphorus deficiency and Phytophthora plurivora infection" in Frontiers in Plant Science, no. 14 (2023):1265782.,
https://doi.org/10.3389/fpls.2023.1265782 . .
3

Silicon modulates root phenomics and leaf ionomics in oak under Phytophthora infection and low phosphorus conditions

Kostić, Igor; Milenkovic, Ivan; Nikolić, Nina; Milanovic, Slobodan; Kostić Kravljanac, Ljiljana; Bosnić, Predrag; Paravinja, Ana

(ISSAG and AgCenterLSU, 2022)

TY  - CONF
AU  - Kostić, Igor
AU  - Milenkovic, Ivan
AU  - Nikolić, Nina
AU  - Milanovic, Slobodan
AU  - Kostić Kravljanac, Ljiljana
AU  - Bosnić, Predrag
AU  - Paravinja, Ana
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2112
AB  - Pedunculate oak (Quercus robur L.) is the most abundant deciduous tree species in Europe with high economical and ecological importance. Different species of Phytophthora are considered as one of the most important factors responsible for deterioration of oak forest, causing serious root damage not only in the forest trees, but also in the nurseries. Oak seedlings were grown in plastic pots with extremely low phosphorus (P) soil (1.5 mg kg-1 total P; no available Olsen-P detected). Silicon (Si) and P were supplied as Na2SiO3 (300 mg Si kg-1 dry soil) and KH2PO4 (180 mg P kg-1 dry soil), respectively. Four treatments (-P/-Si, -P+/Si, +P/-Si, and +P/+Si) were used in the experiment. After two months of experiment, a half of the plants in each treatment were root-inoculated with Phytophthora plurivora. After further four weeks, the first symptoms of P. plurivora infection appeared in leaves (e.g., leaf necrosis and wilting). Plants were then carefully removed from the pots, divided into roots and shoots, and the roots were scanned and analyzed by the WinRHIZO® software. Foliar concentrations of Si, P, K, Ca, Mg, B, Cu, Fe, Mn, and Zn were determined by ICP-OES, while the concentrations of N and S were determined by CHNS Analyzer. The addition of Si obviously improved root health status (e.g., decreasing de number of lesions and necrosis intensity) in the infected plants grown under -P conditions, which was followed by an increased foliar P concentration. The Si supply significantly increased the root variables (e.g., total root volume, root length, and area of thin roots) in both -P and +P plants inoculated with P. plurivora. Therefore, P. plurivora infection and supply of P and Si modulated the nutrient uptake and thereby changed the leaf ionomics, especially for infected -P plants supplied with Si (e.g., significantly increased B, Cu, and Si foliar concentrations and decreased Fe, Mn, Ca, Mg, K, and S foliar concentrations). Furthermore, Si fertilization significantly declined loses in plant dry biomass caused by P. plurivora infection and/or P deficiency, showing biomass comparable to non-infected +P plants.
PB  - ISSAG and AgCenterLSU
C3  - 8th International Conference on Silicon in Agriculture, May 23-26, 2022, New Orleans, LA, USA
T1  - Silicon modulates root phenomics and leaf ionomics in oak under Phytophthora infection and low phosphorus conditions
SP  - 19
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2112
ER  - 
@conference{
author = "Kostić, Igor and Milenkovic, Ivan and Nikolić, Nina and Milanovic, Slobodan and Kostić Kravljanac, Ljiljana and Bosnić, Predrag and Paravinja, Ana",
year = "2022",
abstract = "Pedunculate oak (Quercus robur L.) is the most abundant deciduous tree species in Europe with high economical and ecological importance. Different species of Phytophthora are considered as one of the most important factors responsible for deterioration of oak forest, causing serious root damage not only in the forest trees, but also in the nurseries. Oak seedlings were grown in plastic pots with extremely low phosphorus (P) soil (1.5 mg kg-1 total P; no available Olsen-P detected). Silicon (Si) and P were supplied as Na2SiO3 (300 mg Si kg-1 dry soil) and KH2PO4 (180 mg P kg-1 dry soil), respectively. Four treatments (-P/-Si, -P+/Si, +P/-Si, and +P/+Si) were used in the experiment. After two months of experiment, a half of the plants in each treatment were root-inoculated with Phytophthora plurivora. After further four weeks, the first symptoms of P. plurivora infection appeared in leaves (e.g., leaf necrosis and wilting). Plants were then carefully removed from the pots, divided into roots and shoots, and the roots were scanned and analyzed by the WinRHIZO® software. Foliar concentrations of Si, P, K, Ca, Mg, B, Cu, Fe, Mn, and Zn were determined by ICP-OES, while the concentrations of N and S were determined by CHNS Analyzer. The addition of Si obviously improved root health status (e.g., decreasing de number of lesions and necrosis intensity) in the infected plants grown under -P conditions, which was followed by an increased foliar P concentration. The Si supply significantly increased the root variables (e.g., total root volume, root length, and area of thin roots) in both -P and +P plants inoculated with P. plurivora. Therefore, P. plurivora infection and supply of P and Si modulated the nutrient uptake and thereby changed the leaf ionomics, especially for infected -P plants supplied with Si (e.g., significantly increased B, Cu, and Si foliar concentrations and decreased Fe, Mn, Ca, Mg, K, and S foliar concentrations). Furthermore, Si fertilization significantly declined loses in plant dry biomass caused by P. plurivora infection and/or P deficiency, showing biomass comparable to non-infected +P plants.",
publisher = "ISSAG and AgCenterLSU",
journal = "8th International Conference on Silicon in Agriculture, May 23-26, 2022, New Orleans, LA, USA",
title = "Silicon modulates root phenomics and leaf ionomics in oak under Phytophthora infection and low phosphorus conditions",
pages = "19",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2112"
}
Kostić, I., Milenkovic, I., Nikolić, N., Milanovic, S., Kostić Kravljanac, L., Bosnić, P.,& Paravinja, A.. (2022). Silicon modulates root phenomics and leaf ionomics in oak under Phytophthora infection and low phosphorus conditions. in 8th International Conference on Silicon in Agriculture, May 23-26, 2022, New Orleans, LA, USA
ISSAG and AgCenterLSU., 19.
https://hdl.handle.net/21.15107/rcub_rimsi_2112
Kostić I, Milenkovic I, Nikolić N, Milanovic S, Kostić Kravljanac L, Bosnić P, Paravinja A. Silicon modulates root phenomics and leaf ionomics in oak under Phytophthora infection and low phosphorus conditions. in 8th International Conference on Silicon in Agriculture, May 23-26, 2022, New Orleans, LA, USA. 2022;:19.
https://hdl.handle.net/21.15107/rcub_rimsi_2112 .
Kostić, Igor, Milenkovic, Ivan, Nikolić, Nina, Milanovic, Slobodan, Kostić Kravljanac, Ljiljana, Bosnić, Predrag, Paravinja, Ana, "Silicon modulates root phenomics and leaf ionomics in oak under Phytophthora infection and low phosphorus conditions" in 8th International Conference on Silicon in Agriculture, May 23-26, 2022, New Orleans, LA, USA (2022):19,
https://hdl.handle.net/21.15107/rcub_rimsi_2112 .