Vasilic, Rastko

Link to this page

Authority KeyName Variants
76a9e162-f096-4a0a-be38-7b6d1badfb76
  • Vasilic, Rastko (2)

Author's Bibliography

High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO2 nanotube arrays as interactive supports for Ir nanoparticles

Lačnjevac, Uroš; Vasilic, Rastko; Dobrota, Ana; Durdic, Sladana; Tomanec, Ondrej; Zboril, Radek; Mohajernia, Shiva; Nhat, Truong Nguyen; Skorodumova, Natalia; Manojlović, Dragan; Elezović, Nevenka R.; Pasti, Igor; Schmuki, Patrik

(Royal Soc Chemistry, Cambridge, 2020)

TY  - JOUR
AU  - Lačnjevac, Uroš
AU  - Vasilic, Rastko
AU  - Dobrota, Ana
AU  - Durdic, Sladana
AU  - Tomanec, Ondrej
AU  - Zboril, Radek
AU  - Mohajernia, Shiva
AU  - Nhat, Truong Nguyen
AU  - Skorodumova, Natalia
AU  - Manojlović, Dragan
AU  - Elezović, Nevenka R.
AU  - Pasti, Igor
AU  - Schmuki, Patrik
PY  - 2020
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1373
AB  - Developing ultraefficient electrocatalytic materials for the hydrogen evolution reaction (HER) with low content of expensive platinum group metals (PGMs) via low-energy-input procedures is the key to the successful commercialization of green water electrolysis technologies for sustainable production of high-purity hydrogen. In this study, we report a facile room-temperature synthesis of ultrafine metallic Ir nanoparticles on conductive, proton-intercalated TiO2 nanotube (H-TNT) arrays via galvanic displacement. A series of experiments demonstrate that a controlled transformation of the H-TNT surface microstructure from neat open-top tubes to disordered nanostripe bundles ("nanograss") is highly beneficial for providing an abundance of exposed Ir active sites. Consequently, for nanograss-engineered composites, outstanding HER activity metrics are achieved even at very low Ir(iii) precursor concentrations. An optimum Ir"TNT cathode loaded with 5.7 mu g(Ir) cm(-2) exhibits an overpotential of -63 mV at -100 mA cm(-2) and a mass activity of 34 A mg(Ir)(-1) at -80 mV under acidic conditions, along with excellent catalytic durability and structural integrity. Density functional theory (DFT) simulations reveal that the hydrogen-rich TiO2 surface not only stabilizes the deposited Ir and weakens its H binding strength to a moderate intensity, but also actively takes part in the HER mechanism by refreshing the Ir catalytic sites near the Ir|H-TiO2 interface, thus substantially promoting H-2 generation. The comprehensive characterization combined with theory provides an in-depth understanding of the electrocatalytic behavior of H-TNT supported PGM nanoparticles and demonstrates their high potential as competitive electrocatalyst systems for the HER.
PB  - Royal Soc Chemistry, Cambridge
T2  - Journal of Materials Chemistry A
T1  - High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO2 nanotube arrays as interactive supports for Ir nanoparticles
EP  - 22790
IS  - 43
SP  - 22773
VL  - 8
DO  - 10.1039/d0ta07492f
ER  - 
@article{
author = "Lačnjevac, Uroš and Vasilic, Rastko and Dobrota, Ana and Durdic, Sladana and Tomanec, Ondrej and Zboril, Radek and Mohajernia, Shiva and Nhat, Truong Nguyen and Skorodumova, Natalia and Manojlović, Dragan and Elezović, Nevenka R. and Pasti, Igor and Schmuki, Patrik",
year = "2020",
abstract = "Developing ultraefficient electrocatalytic materials for the hydrogen evolution reaction (HER) with low content of expensive platinum group metals (PGMs) via low-energy-input procedures is the key to the successful commercialization of green water electrolysis technologies for sustainable production of high-purity hydrogen. In this study, we report a facile room-temperature synthesis of ultrafine metallic Ir nanoparticles on conductive, proton-intercalated TiO2 nanotube (H-TNT) arrays via galvanic displacement. A series of experiments demonstrate that a controlled transformation of the H-TNT surface microstructure from neat open-top tubes to disordered nanostripe bundles ("nanograss") is highly beneficial for providing an abundance of exposed Ir active sites. Consequently, for nanograss-engineered composites, outstanding HER activity metrics are achieved even at very low Ir(iii) precursor concentrations. An optimum Ir"TNT cathode loaded with 5.7 mu g(Ir) cm(-2) exhibits an overpotential of -63 mV at -100 mA cm(-2) and a mass activity of 34 A mg(Ir)(-1) at -80 mV under acidic conditions, along with excellent catalytic durability and structural integrity. Density functional theory (DFT) simulations reveal that the hydrogen-rich TiO2 surface not only stabilizes the deposited Ir and weakens its H binding strength to a moderate intensity, but also actively takes part in the HER mechanism by refreshing the Ir catalytic sites near the Ir|H-TiO2 interface, thus substantially promoting H-2 generation. The comprehensive characterization combined with theory provides an in-depth understanding of the electrocatalytic behavior of H-TNT supported PGM nanoparticles and demonstrates their high potential as competitive electrocatalyst systems for the HER.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Journal of Materials Chemistry A",
title = "High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO2 nanotube arrays as interactive supports for Ir nanoparticles",
pages = "22790-22773",
number = "43",
volume = "8",
doi = "10.1039/d0ta07492f"
}
Lačnjevac, U., Vasilic, R., Dobrota, A., Durdic, S., Tomanec, O., Zboril, R., Mohajernia, S., Nhat, T. N., Skorodumova, N., Manojlović, D., Elezović, N. R., Pasti, I.,& Schmuki, P.. (2020). High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO2 nanotube arrays as interactive supports for Ir nanoparticles. in Journal of Materials Chemistry A
Royal Soc Chemistry, Cambridge., 8(43), 22773-22790.
https://doi.org/10.1039/d0ta07492f
Lačnjevac U, Vasilic R, Dobrota A, Durdic S, Tomanec O, Zboril R, Mohajernia S, Nhat TN, Skorodumova N, Manojlović D, Elezović NR, Pasti I, Schmuki P. High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO2 nanotube arrays as interactive supports for Ir nanoparticles. in Journal of Materials Chemistry A. 2020;8(43):22773-22790.
doi:10.1039/d0ta07492f .
Lačnjevac, Uroš, Vasilic, Rastko, Dobrota, Ana, Durdic, Sladana, Tomanec, Ondrej, Zboril, Radek, Mohajernia, Shiva, Nhat, Truong Nguyen, Skorodumova, Natalia, Manojlović, Dragan, Elezović, Nevenka R., Pasti, Igor, Schmuki, Patrik, "High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO2 nanotube arrays as interactive supports for Ir nanoparticles" in Journal of Materials Chemistry A, 8, no. 43 (2020):22773-22790,
https://doi.org/10.1039/d0ta07492f . .
2
29
14
30

Deposition of Pd nanoparticles on the walls of cathodically hydrogenated TiO2 nanotube arrays via galvanic displacement: A novel route to produce exceptionally active and durable composite electrocatalysts for cost-effective hydrogen evolution

Lačnjevac, Uroš; Vasilic, Rastko; Tokarski, Tomasz; Cios, Grzegorz; Zabinski, Piotr; Elezović, Nevenka R.; Krstajić, Nedeljko V

(Elsevier Science Bv, Amsterdam, 2018)

TY  - JOUR
AU  - Lačnjevac, Uroš
AU  - Vasilic, Rastko
AU  - Tokarski, Tomasz
AU  - Cios, Grzegorz
AU  - Zabinski, Piotr
AU  - Elezović, Nevenka R.
AU  - Krstajić, Nedeljko V
PY  - 2018
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1171
AB  - Noble metal-based materials are inevitable components of cathodes for the hydrogen evolution reaction (HER) in future water electrolysis systems for clean hydrogen fuel production. However, designing active and durable nanostructured catalysts with low amount of costly noble metals is still a great challenge. Herein, we show that Pd nanoparticles (NPs) can be synthesized on the highly developed surface of anodically grown TiO2 nanotube (TNT) arrays by applying a simple galvanic displacement strategy. In a two-step procedure, air-annealed TNT arrays are first cathodically protonated and then partially reoxidized by Pd(II) ions from a PdCl2 solution while providing a scaffold for the metallic Pd deposit. Structural and electrochemical characterizations reveal that the Pd content and the width of the Pd-populated zone of the tube walls are in correlation with the tube length. The Pd"TNT composites display remarkable HER activity in 1 M HClO4 delivering a current density of -10 mA cm(-2) at an overpotential of -38 mV and a Tafel slope of only -13 mV/dec. More impressively, the mass and apparent activity of the Pd"TNTs is superior to even commercial Pt/C at higher current densities. The composites also show stable chronopotentiometric response over 25 h and a negligible HER overpotential increase after potential cycling tests. The exceptional performance of the Pd"TNT cathodes is assigned to the unique semiconducting properties of the three-dimensional, interactive TNT supporting structures that, on the one hand, provide abundance of Pd active sites with optimized atomic hydrogen binding energy for the cathodic HER, but on the other hand, prevent anodic degradation of the Pd catalyst.
PB  - Elsevier Science Bv, Amsterdam
T2  - Nano Energy
T1  - Deposition of Pd nanoparticles on the walls of cathodically hydrogenated TiO2 nanotube arrays via galvanic displacement: A novel route to produce exceptionally active and durable composite electrocatalysts for cost-effective hydrogen evolution
EP  - 538
SP  - 527
VL  - 47
DO  - 10.1016/j.nanoen.2018.03.040
ER  - 
@article{
author = "Lačnjevac, Uroš and Vasilic, Rastko and Tokarski, Tomasz and Cios, Grzegorz and Zabinski, Piotr and Elezović, Nevenka R. and Krstajić, Nedeljko V",
year = "2018",
abstract = "Noble metal-based materials are inevitable components of cathodes for the hydrogen evolution reaction (HER) in future water electrolysis systems for clean hydrogen fuel production. However, designing active and durable nanostructured catalysts with low amount of costly noble metals is still a great challenge. Herein, we show that Pd nanoparticles (NPs) can be synthesized on the highly developed surface of anodically grown TiO2 nanotube (TNT) arrays by applying a simple galvanic displacement strategy. In a two-step procedure, air-annealed TNT arrays are first cathodically protonated and then partially reoxidized by Pd(II) ions from a PdCl2 solution while providing a scaffold for the metallic Pd deposit. Structural and electrochemical characterizations reveal that the Pd content and the width of the Pd-populated zone of the tube walls are in correlation with the tube length. The Pd"TNT composites display remarkable HER activity in 1 M HClO4 delivering a current density of -10 mA cm(-2) at an overpotential of -38 mV and a Tafel slope of only -13 mV/dec. More impressively, the mass and apparent activity of the Pd"TNTs is superior to even commercial Pt/C at higher current densities. The composites also show stable chronopotentiometric response over 25 h and a negligible HER overpotential increase after potential cycling tests. The exceptional performance of the Pd"TNT cathodes is assigned to the unique semiconducting properties of the three-dimensional, interactive TNT supporting structures that, on the one hand, provide abundance of Pd active sites with optimized atomic hydrogen binding energy for the cathodic HER, but on the other hand, prevent anodic degradation of the Pd catalyst.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Nano Energy",
title = "Deposition of Pd nanoparticles on the walls of cathodically hydrogenated TiO2 nanotube arrays via galvanic displacement: A novel route to produce exceptionally active and durable composite electrocatalysts for cost-effective hydrogen evolution",
pages = "538-527",
volume = "47",
doi = "10.1016/j.nanoen.2018.03.040"
}
Lačnjevac, U., Vasilic, R., Tokarski, T., Cios, G., Zabinski, P., Elezović, N. R.,& Krstajić, N. V.. (2018). Deposition of Pd nanoparticles on the walls of cathodically hydrogenated TiO2 nanotube arrays via galvanic displacement: A novel route to produce exceptionally active and durable composite electrocatalysts for cost-effective hydrogen evolution. in Nano Energy
Elsevier Science Bv, Amsterdam., 47, 527-538.
https://doi.org/10.1016/j.nanoen.2018.03.040
Lačnjevac U, Vasilic R, Tokarski T, Cios G, Zabinski P, Elezović NR, Krstajić NV. Deposition of Pd nanoparticles on the walls of cathodically hydrogenated TiO2 nanotube arrays via galvanic displacement: A novel route to produce exceptionally active and durable composite electrocatalysts for cost-effective hydrogen evolution. in Nano Energy. 2018;47:527-538.
doi:10.1016/j.nanoen.2018.03.040 .
Lačnjevac, Uroš, Vasilic, Rastko, Tokarski, Tomasz, Cios, Grzegorz, Zabinski, Piotr, Elezović, Nevenka R., Krstajić, Nedeljko V, "Deposition of Pd nanoparticles on the walls of cathodically hydrogenated TiO2 nanotube arrays via galvanic displacement: A novel route to produce exceptionally active and durable composite electrocatalysts for cost-effective hydrogen evolution" in Nano Energy, 47 (2018):527-538,
https://doi.org/10.1016/j.nanoen.2018.03.040 . .
31
2
31