Barisic, Dario

Link to this page

Authority KeyName Variants
orcid::0000-0002-0626-8193
  • Barisic, Dario (1)
  • Barišić, Dario (1)
Projects

Author's Bibliography

Mixed Mg-Co spinel ferrites: Structure, morphology, magnetic and photocatalytic properties

Dojčinović, Milena; Vasiljević, Zorka Z; Pavlović, Vera P.; Barisic, Dario; Pajić, Damir; Tadić, Nenad B.; Nikolić, Maria Vesna

(Elsevier Science Sa, Lausanne, 2021)

TY  - JOUR
AU  - Dojčinović, Milena
AU  - Vasiljević, Zorka Z
AU  - Pavlović, Vera P.
AU  - Barisic, Dario
AU  - Pajić, Damir
AU  - Tadić, Nenad B.
AU  - Nikolić, Maria Vesna
PY  - 2021
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1451
AB  - CoxMg1-xFe2O4 (where x was 0.0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1) spinel ferrites were synthesized by the sol-gel combustion method using citric acid as fuel, following the rules of propellant chemistry. Amorphous powders were then calcined at 700 degrees C for 3 h. Structural analysis by X-Ray diffraction (XRD), FTIR and Raman spectroscopy confirmed the formation of a cubic spinel structure where the cation distribution and inversion degree depended on the Co2+ and Mg2+ ion content. Accordingly, the lattice parameter varied between 8.3703 angstrom (MgFe2O4) and 8.3919 A (Co-0.9 Mg0.1Fe2O4) as did the crystallite size, from 34 nm (Co0.1Mg0.9Fe2O4) to 48 nm (Co0.9Mg0.1Fe2O4). Scanning electron microscopy (SEM) showed the formation of multigrain agglomerates. Determined values of the maximal and remanent magnetization, as well as coercive field, depended on the Co2+ and Mg2+ ion content and increased with substitution of diamagnetic Mg2+ ions with magnetic Co2+ ions. Most impressive is the increase of the coercive field from 74 Oe for MgFe2O4 to 1000 Oe for CoFe2O4, as well as an increase of magnetization in the field of 10 kOe from 27.4 emu g(-1) to 75.7 emu g(-1). The determined optical band gaps from UV/Vis DRS measurements showed a strong dependence on cation content, morphology, and crystallite size, decreasing from 2.09 eV for MgFe2O4 to 1.42 eV for CoFe2O4. The photocatalytic efficiency of as-synthesized ferrites was investigated by monitoring photocatalytic degradation of Methylene Blue (MB) under natural sunlight, and artificial light source emitting visible light. Different conditions of MB degradation such as photocatalyst loading, molar concentration of MB, and pH values were investigated. Results have shown that under both visible light and natural sunlight, excessive amounts of cobalt retarded the photocatalytic process. Co0.9Mg0.1Fe2O4 showed considerable activity (74.5% after 4 h) that is unexpected but possibly connected to structural anomalies. The best photocatalytic activity under natural sunlight was achieved by MgFe204 (82% after 4 h), while the best photocatalytic activity under visible light was achieved by Co0.1Mg0.9Fe2O4 (79% after 4 h).
PB  - Elsevier Science Sa, Lausanne
T2  - Journal of Alloys and Compounds
T1  - Mixed Mg-Co spinel ferrites: Structure, morphology, magnetic and photocatalytic properties
VL  - 855
DO  - 10.1016/j.jallcom.2020.157429
ER  - 
@article{
author = "Dojčinović, Milena and Vasiljević, Zorka Z and Pavlović, Vera P. and Barisic, Dario and Pajić, Damir and Tadić, Nenad B. and Nikolić, Maria Vesna",
year = "2021",
abstract = "CoxMg1-xFe2O4 (where x was 0.0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1) spinel ferrites were synthesized by the sol-gel combustion method using citric acid as fuel, following the rules of propellant chemistry. Amorphous powders were then calcined at 700 degrees C for 3 h. Structural analysis by X-Ray diffraction (XRD), FTIR and Raman spectroscopy confirmed the formation of a cubic spinel structure where the cation distribution and inversion degree depended on the Co2+ and Mg2+ ion content. Accordingly, the lattice parameter varied between 8.3703 angstrom (MgFe2O4) and 8.3919 A (Co-0.9 Mg0.1Fe2O4) as did the crystallite size, from 34 nm (Co0.1Mg0.9Fe2O4) to 48 nm (Co0.9Mg0.1Fe2O4). Scanning electron microscopy (SEM) showed the formation of multigrain agglomerates. Determined values of the maximal and remanent magnetization, as well as coercive field, depended on the Co2+ and Mg2+ ion content and increased with substitution of diamagnetic Mg2+ ions with magnetic Co2+ ions. Most impressive is the increase of the coercive field from 74 Oe for MgFe2O4 to 1000 Oe for CoFe2O4, as well as an increase of magnetization in the field of 10 kOe from 27.4 emu g(-1) to 75.7 emu g(-1). The determined optical band gaps from UV/Vis DRS measurements showed a strong dependence on cation content, morphology, and crystallite size, decreasing from 2.09 eV for MgFe2O4 to 1.42 eV for CoFe2O4. The photocatalytic efficiency of as-synthesized ferrites was investigated by monitoring photocatalytic degradation of Methylene Blue (MB) under natural sunlight, and artificial light source emitting visible light. Different conditions of MB degradation such as photocatalyst loading, molar concentration of MB, and pH values were investigated. Results have shown that under both visible light and natural sunlight, excessive amounts of cobalt retarded the photocatalytic process. Co0.9Mg0.1Fe2O4 showed considerable activity (74.5% after 4 h) that is unexpected but possibly connected to structural anomalies. The best photocatalytic activity under natural sunlight was achieved by MgFe204 (82% after 4 h), while the best photocatalytic activity under visible light was achieved by Co0.1Mg0.9Fe2O4 (79% after 4 h).",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Journal of Alloys and Compounds",
title = "Mixed Mg-Co spinel ferrites: Structure, morphology, magnetic and photocatalytic properties",
volume = "855",
doi = "10.1016/j.jallcom.2020.157429"
}
Dojčinović, M., Vasiljević, Z. Z., Pavlović, V. P., Barisic, D., Pajić, D., Tadić, N. B.,& Nikolić, M. V.. (2021). Mixed Mg-Co spinel ferrites: Structure, morphology, magnetic and photocatalytic properties. in Journal of Alloys and Compounds
Elsevier Science Sa, Lausanne., 855.
https://doi.org/10.1016/j.jallcom.2020.157429
Dojčinović M, Vasiljević ZZ, Pavlović VP, Barisic D, Pajić D, Tadić NB, Nikolić MV. Mixed Mg-Co spinel ferrites: Structure, morphology, magnetic and photocatalytic properties. in Journal of Alloys and Compounds. 2021;855.
doi:10.1016/j.jallcom.2020.157429 .
Dojčinović, Milena, Vasiljević, Zorka Z, Pavlović, Vera P., Barisic, Dario, Pajić, Damir, Tadić, Nenad B., Nikolić, Maria Vesna, "Mixed Mg-Co spinel ferrites: Structure, morphology, magnetic and photocatalytic properties" in Journal of Alloys and Compounds, 855 (2021),
https://doi.org/10.1016/j.jallcom.2020.157429 . .
80
76

Finding optimal conditions and investigating the structure & morphology of cobalt/magnesium ferrite based cubic spinels (CoxMg1-xFe2O4) as photocatalysts

Dojčinović, Milena; Vasiljević, Zorka Z; Tadić, Nenad B.; Pavlović, Vera P.; Barišić, Dario; Pajić, Damir; Nikolić, Maria Vesna

(Belgrade : Institute of Technical Sciences of SASA, 2019)

TY  - CONF
AU  - Dojčinović, Milena
AU  - Vasiljević, Zorka Z
AU  - Tadić, Nenad B.
AU  - Pavlović, Vera P.
AU  - Barišić, Dario
AU  - Pajić, Damir
AU  - Nikolić, Maria Vesna
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/6963
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1620
AB  - Cobalt/magnesium ferrites with various mole percentage ratio of the metals (obtained structures are CoxMg1-xFe2O4 with x being 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0) were synthesized by sol-gel combustion synthesis using glycine as fuel, following the rules of propellant chemistry. The powders were then sintered at 700 °C for 3 hours. Obtained powders were characterized by X-Ray diffraction (XRD), scanning electron microscopy (SEM), Ramanspectroscopy, UV/vis diffuse reflectance spectroscopy (DRS). Investigation of the magnetic properties was also conducted by vibrating sample magnetometry (VSM). The obtained powders were proved to be phase-pure cubic spinels which formed agglomerated micrograins. Series of photocatalytic experiments of methylene blue degradation were done.The influence of different experimental conditions was investigated including variations of: pH values, concentrations of the pollutant, masses of the photocatalyst, different light sources and therefore different light irradiation. Interesting results, including enhancement of the degradation rate with the introduction of cobalt into MgFe2O4 and decrease of the degradation rate with further increase of cobalt content and formation of hard agglomerates, open new possibilities for further investigation of the utilisation of Co/Mg ferrites as photocatalysts.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia
T1  - Finding optimal conditions and investigating the structure & morphology of cobalt/magnesium ferrite based cubic spinels (CoxMg1-xFe2O4) as photocatalysts
EP  - 71
SP  - 71
UR  - https://hdl.handle.net/21.15107/rcub_dais_6963
ER  - 
@conference{
author = "Dojčinović, Milena and Vasiljević, Zorka Z and Tadić, Nenad B. and Pavlović, Vera P. and Barišić, Dario and Pajić, Damir and Nikolić, Maria Vesna",
year = "2019",
abstract = "Cobalt/magnesium ferrites with various mole percentage ratio of the metals (obtained structures are CoxMg1-xFe2O4 with x being 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0) were synthesized by sol-gel combustion synthesis using glycine as fuel, following the rules of propellant chemistry. The powders were then sintered at 700 °C for 3 hours. Obtained powders were characterized by X-Ray diffraction (XRD), scanning electron microscopy (SEM), Ramanspectroscopy, UV/vis diffuse reflectance spectroscopy (DRS). Investigation of the magnetic properties was also conducted by vibrating sample magnetometry (VSM). The obtained powders were proved to be phase-pure cubic spinels which formed agglomerated micrograins. Series of photocatalytic experiments of methylene blue degradation were done.The influence of different experimental conditions was investigated including variations of: pH values, concentrations of the pollutant, masses of the photocatalyst, different light sources and therefore different light irradiation. Interesting results, including enhancement of the degradation rate with the introduction of cobalt into MgFe2O4 and decrease of the degradation rate with further increase of cobalt content and formation of hard agglomerates, open new possibilities for further investigation of the utilisation of Co/Mg ferrites as photocatalysts.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia",
title = "Finding optimal conditions and investigating the structure & morphology of cobalt/magnesium ferrite based cubic spinels (CoxMg1-xFe2O4) as photocatalysts",
pages = "71-71",
url = "https://hdl.handle.net/21.15107/rcub_dais_6963"
}
Dojčinović, M., Vasiljević, Z. Z., Tadić, N. B., Pavlović, V. P., Barišić, D., Pajić, D.,& Nikolić, M. V.. (2019). Finding optimal conditions and investigating the structure & morphology of cobalt/magnesium ferrite based cubic spinels (CoxMg1-xFe2O4) as photocatalysts. in Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 71-71.
https://hdl.handle.net/21.15107/rcub_dais_6963
Dojčinović M, Vasiljević ZZ, Tadić NB, Pavlović VP, Barišić D, Pajić D, Nikolić MV. Finding optimal conditions and investigating the structure & morphology of cobalt/magnesium ferrite based cubic spinels (CoxMg1-xFe2O4) as photocatalysts. in Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia. 2019;:71-71.
https://hdl.handle.net/21.15107/rcub_dais_6963 .
Dojčinović, Milena, Vasiljević, Zorka Z, Tadić, Nenad B., Pavlović, Vera P., Barišić, Dario, Pajić, Damir, Nikolić, Maria Vesna, "Finding optimal conditions and investigating the structure & morphology of cobalt/magnesium ferrite based cubic spinels (CoxMg1-xFe2O4) as photocatalysts" in Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia (2019):71-71,
https://hdl.handle.net/21.15107/rcub_dais_6963 .