Radovanovic, Zeljko

Link to this page

Authority KeyName Variants
c0f09b05-4713-4a1e-8fe5-3a5416b65426
  • Radovanovic, Zeljko (1)
Projects

Author's Bibliography

Ag/ZnO NANOCOMPOSITES FOR PHOTOCATALYTIC APPLICATION

Simović, Bojana; Radovanovic, Zeljko; Branković, Goran; Dapčević, Aleksandra

(Institut za multidisciplinarna istraživanja, Belgrade, Serbia, 2023)

TY  - CONF
AU  - Simović, Bojana
AU  - Radovanovic, Zeljko
AU  - Branković, Goran
AU  - Dapčević, Aleksandra
PY  - 2023
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1991
AB  - In this work, the decoration of noble metal nanoparticles on a semiconductor
surface was used as a strategy to reach strong visible light absorption and efficient
electron-hole separation to enhance the photocatalytic activity of ZnO.
The Ag-modified ZnO nanopowders were obtained by the green synthesis. Zinc
acetate dihydrate with different silver nitrate content (0, 0.75, 1.5 and 3 mol%) was
dissolved in ethylene glycol in the presence of chitosan. The obtained mixtures in
the form of gel were heated at 150 °C for 2 h and subsequently calcined at 400 °C
for 1 h. The obtained samples were characterized by XRPD, FESEM, HRTEM, and
UV-vis techniques while the photocatalytic efficiency was tested by monitoring the
degradation of textile dyes Reactive Orange 16 (RO16), Acid Green 25 (AG25),
Mordant Blue 9 (MB9), and Ethyl Violet (EV) then compared with the commercial
ZnO nanopowder.
The results showed that the Ag/ZnO samples consisted of ZnO nanoparticles
with an average crystallite size of about 25 nm and Ag (20–30 nm) distributed on
the surface of ZnO. The uniformity in size and nearly spherical shape of ZnO
nanoparticles, forming various forms of agglomerates, were observed. Compared to
both, the unmodified and commercial ZnO, all the prepared Ag/ZnO composites
showed a broad band in the visible region at 500 nm, resulting in a narrowing of the
band gap. This band confirms the surface plasmon resonance of the metallic Ag
nanoparticles, since they can absorb visible light and activate the photocatalyst in
the visible spectrum.
All the obtained nanopowders showed higher adsorption power and
photocatalytic activity in the degradation of RO16 dye than the commercial ZnO.
The powder with 1.5 mol% of Ag had the highest photocatalytic efficiency as a
consequence of smaller Ag particles and their good distribution, as well as the
narrowest band gap. This means that the photocatalytic activity does not depend on
the Ag content only and that the size and distribution of the metal particles play an
important role. Since the ZnO with 1.5 mol% of Ag demonstrated the best
photocatalytic activity, the same sample was tested for diverse dyes and the high
photocatalytic efficiency was also confirmed by testing on AG25, MB9 and EV
dyes.
PB  - Institut za multidisciplinarna istraživanja, Belgrade, Serbia
C3  - 7th Conference of the Serbian Society for Ceramic Materials, Belgrade, Serbia
T1  - Ag/ZnO NANOCOMPOSITES FOR PHOTOCATALYTIC APPLICATION
SP  - 106
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_1991
ER  - 
@conference{
author = "Simović, Bojana and Radovanovic, Zeljko and Branković, Goran and Dapčević, Aleksandra",
year = "2023",
abstract = "In this work, the decoration of noble metal nanoparticles on a semiconductor
surface was used as a strategy to reach strong visible light absorption and efficient
electron-hole separation to enhance the photocatalytic activity of ZnO.
The Ag-modified ZnO nanopowders were obtained by the green synthesis. Zinc
acetate dihydrate with different silver nitrate content (0, 0.75, 1.5 and 3 mol%) was
dissolved in ethylene glycol in the presence of chitosan. The obtained mixtures in
the form of gel were heated at 150 °C for 2 h and subsequently calcined at 400 °C
for 1 h. The obtained samples were characterized by XRPD, FESEM, HRTEM, and
UV-vis techniques while the photocatalytic efficiency was tested by monitoring the
degradation of textile dyes Reactive Orange 16 (RO16), Acid Green 25 (AG25),
Mordant Blue 9 (MB9), and Ethyl Violet (EV) then compared with the commercial
ZnO nanopowder.
The results showed that the Ag/ZnO samples consisted of ZnO nanoparticles
with an average crystallite size of about 25 nm and Ag (20–30 nm) distributed on
the surface of ZnO. The uniformity in size and nearly spherical shape of ZnO
nanoparticles, forming various forms of agglomerates, were observed. Compared to
both, the unmodified and commercial ZnO, all the prepared Ag/ZnO composites
showed a broad band in the visible region at 500 nm, resulting in a narrowing of the
band gap. This band confirms the surface plasmon resonance of the metallic Ag
nanoparticles, since they can absorb visible light and activate the photocatalyst in
the visible spectrum.
All the obtained nanopowders showed higher adsorption power and
photocatalytic activity in the degradation of RO16 dye than the commercial ZnO.
The powder with 1.5 mol% of Ag had the highest photocatalytic efficiency as a
consequence of smaller Ag particles and their good distribution, as well as the
narrowest band gap. This means that the photocatalytic activity does not depend on
the Ag content only and that the size and distribution of the metal particles play an
important role. Since the ZnO with 1.5 mol% of Ag demonstrated the best
photocatalytic activity, the same sample was tested for diverse dyes and the high
photocatalytic efficiency was also confirmed by testing on AG25, MB9 and EV
dyes.",
publisher = "Institut za multidisciplinarna istraživanja, Belgrade, Serbia",
journal = "7th Conference of the Serbian Society for Ceramic Materials, Belgrade, Serbia",
title = "Ag/ZnO NANOCOMPOSITES FOR PHOTOCATALYTIC APPLICATION",
pages = "106",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_1991"
}
Simović, B., Radovanovic, Z., Branković, G.,& Dapčević, A.. (2023). Ag/ZnO NANOCOMPOSITES FOR PHOTOCATALYTIC APPLICATION. in 7th Conference of the Serbian Society for Ceramic Materials, Belgrade, Serbia
Institut za multidisciplinarna istraživanja, Belgrade, Serbia., 106.
https://hdl.handle.net/21.15107/rcub_rimsi_1991
Simović B, Radovanovic Z, Branković G, Dapčević A. Ag/ZnO NANOCOMPOSITES FOR PHOTOCATALYTIC APPLICATION. in 7th Conference of the Serbian Society for Ceramic Materials, Belgrade, Serbia. 2023;:106.
https://hdl.handle.net/21.15107/rcub_rimsi_1991 .
Simović, Bojana, Radovanovic, Zeljko, Branković, Goran, Dapčević, Aleksandra, "Ag/ZnO NANOCOMPOSITES FOR PHOTOCATALYTIC APPLICATION" in 7th Conference of the Serbian Society for Ceramic Materials, Belgrade, Serbia (2023):106,
https://hdl.handle.net/21.15107/rcub_rimsi_1991 .