Rečnik, Aleksander

Link to this page

Authority KeyName Variants
c0404db4-7333-4f4b-874e-b79c69cab909
  • Rečnik, Aleksander (4)
Projects

Author's Bibliography

Effect of the sintering technique on the properties of Sb-doped BaSnO3 ceramics

Vukašinović, Jelena; Počuča-Nešić, Milica; Malešević, Aleksandar; Ribić, Vesna; Drev, Sandra; Rečnik, Aleksander; Bernik, Slavko; Podlogar, Matejka; Branković, Goran

(University of Belgrade, Institute for Multidisciplinary Research, 2022)

TY  - CONF
AU  - Vukašinović, Jelena
AU  - Počuča-Nešić, Milica
AU  - Malešević, Aleksandar
AU  - Ribić, Vesna
AU  - Drev, Sandra
AU  - Rečnik, Aleksander
AU  - Bernik, Slavko
AU  - Podlogar, Matejka
AU  - Branković, Goran
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2026
AB  - Barium stannate, BaSnO3 (BSO), a cubic perovskite-type oxide with its
interesting structural, optical and electrical properties has wide application as an
electrode material, thermally stable capacitor, transparent conductive oxide,
photocatalyst, humidity and gas sensor material [1]. Partial substitution of Sn by Sb
in BSO leads to drastic changes primarily in its electrical properties, resulting in
metallic-like conductivity of doped ceramics. Major problems concerning the
synthesis of Sb doped BSO (BSSO) are connected to the phase composition and
density of final ceramic material.
This study covers the comprehensive investigation of structural, microstructural
and electrical properties of the Sb-doped BaSn1-xSbxO3 (x = 0.00, 0.04 and 0.08,
BSSO) ceramic materials obtained by two different sintering techniques:
conventional sintering (CS) and Spark Plasma sintering (SPS). The relative densities
of the BSSO-CS ceramic samples sintered at 1600 °C for 3 h was in the range of 79–
96 %. On the other side, the relative densities of BSSO-SPS ceramic samples in the
range of 86–96 % were obtained at 1200 °C, with sintering time of only 5 minutes.
The XRD analysis confirmed that cubic BaSnO3 is a major phase in all BSSO
samples. The presence of tetragonal Ba2SnO4 as a secondary phase was detected in
BSSO-SPS ceramic samples, with its content decreasing upon Sb-doping. As
expected, the grain size of the samples sintered at higher temperatures (BSSO-CS) is
larger in comparison with BSSO-SPS ceramic samples, which was confirmed by
Scanning Electron Microscopy (SEM). SEM analysis also revealed the layered
structure within the grains of BaSn0.92Sb0.08O3-CS sample while HRTEM analysis
confirmed the existence of the low angle grain boundaries (LAGBs) in the SPSed
sample with the same composition.
The electrical resistivity decreased upon Sb doping, and all doped BSSO
samples showed the linear I-U characteristic in the temperature range of 25–150 °C.
The semiconductor behavior of all BSSO-CS and BSSO-SPS (x = 0.00 and 0.04)
ceramic samples was confirmed through the existence of semicircles in their
impedance spectra. On the other hand, the BaSn0.92Sb0.08O3 sample showed the
metallic-like behavior resulting from the loss of the electrostatic barriers at LAGBs,
which is manifested through the absence of the semicircle in its impedance spectra.
PB  - University of Belgrade, Institute for Multidisciplinary Research
C3  - 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia
T1  - Effect of the sintering technique on the properties of Sb-doped BaSnO3 ceramics
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2026
ER  - 
@conference{
author = "Vukašinović, Jelena and Počuča-Nešić, Milica and Malešević, Aleksandar and Ribić, Vesna and Drev, Sandra and Rečnik, Aleksander and Bernik, Slavko and Podlogar, Matejka and Branković, Goran",
year = "2022",
abstract = "Barium stannate, BaSnO3 (BSO), a cubic perovskite-type oxide with its
interesting structural, optical and electrical properties has wide application as an
electrode material, thermally stable capacitor, transparent conductive oxide,
photocatalyst, humidity and gas sensor material [1]. Partial substitution of Sn by Sb
in BSO leads to drastic changes primarily in its electrical properties, resulting in
metallic-like conductivity of doped ceramics. Major problems concerning the
synthesis of Sb doped BSO (BSSO) are connected to the phase composition and
density of final ceramic material.
This study covers the comprehensive investigation of structural, microstructural
and electrical properties of the Sb-doped BaSn1-xSbxO3 (x = 0.00, 0.04 and 0.08,
BSSO) ceramic materials obtained by two different sintering techniques:
conventional sintering (CS) and Spark Plasma sintering (SPS). The relative densities
of the BSSO-CS ceramic samples sintered at 1600 °C for 3 h was in the range of 79–
96 %. On the other side, the relative densities of BSSO-SPS ceramic samples in the
range of 86–96 % were obtained at 1200 °C, with sintering time of only 5 minutes.
The XRD analysis confirmed that cubic BaSnO3 is a major phase in all BSSO
samples. The presence of tetragonal Ba2SnO4 as a secondary phase was detected in
BSSO-SPS ceramic samples, with its content decreasing upon Sb-doping. As
expected, the grain size of the samples sintered at higher temperatures (BSSO-CS) is
larger in comparison with BSSO-SPS ceramic samples, which was confirmed by
Scanning Electron Microscopy (SEM). SEM analysis also revealed the layered
structure within the grains of BaSn0.92Sb0.08O3-CS sample while HRTEM analysis
confirmed the existence of the low angle grain boundaries (LAGBs) in the SPSed
sample with the same composition.
The electrical resistivity decreased upon Sb doping, and all doped BSSO
samples showed the linear I-U characteristic in the temperature range of 25–150 °C.
The semiconductor behavior of all BSSO-CS and BSSO-SPS (x = 0.00 and 0.04)
ceramic samples was confirmed through the existence of semicircles in their
impedance spectra. On the other hand, the BaSn0.92Sb0.08O3 sample showed the
metallic-like behavior resulting from the loss of the electrostatic barriers at LAGBs,
which is manifested through the absence of the semicircle in its impedance spectra.",
publisher = "University of Belgrade, Institute for Multidisciplinary Research",
journal = "6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia",
title = "Effect of the sintering technique on the properties of Sb-doped BaSnO3 ceramics",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2026"
}
Vukašinović, J., Počuča-Nešić, M., Malešević, A., Ribić, V., Drev, S., Rečnik, A., Bernik, S., Podlogar, M.,& Branković, G.. (2022). Effect of the sintering technique on the properties of Sb-doped BaSnO3 ceramics. in 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia
University of Belgrade, Institute for Multidisciplinary Research..
https://hdl.handle.net/21.15107/rcub_rimsi_2026
Vukašinović J, Počuča-Nešić M, Malešević A, Ribić V, Drev S, Rečnik A, Bernik S, Podlogar M, Branković G. Effect of the sintering technique on the properties of Sb-doped BaSnO3 ceramics. in 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia. 2022;.
https://hdl.handle.net/21.15107/rcub_rimsi_2026 .
Vukašinović, Jelena, Počuča-Nešić, Milica, Malešević, Aleksandar, Ribić, Vesna, Drev, Sandra, Rečnik, Aleksander, Bernik, Slavko, Podlogar, Matejka, Branković, Goran, "Effect of the sintering technique on the properties of Sb-doped BaSnO3 ceramics" in 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia (2022),
https://hdl.handle.net/21.15107/rcub_rimsi_2026 .

First-Principles Calculation of Gd - doped BiFeO3

Ribić, Vesna; Dapčević, Aleksandra; Skorodumova, Natalia; Rečnik, Aleksander; Luković Golić, Danijela; Branković, Zorica; Branković, Goran

(HPC-Europa3, Ljubljana, Slovenija, 2018)

TY  - CONF
AU  - Ribić, Vesna
AU  - Dapčević, Aleksandra
AU  - Skorodumova, Natalia
AU  - Rečnik, Aleksander
AU  - Luković Golić, Danijela
AU  - Branković, Zorica
AU  - Branković, Goran
PY  - 2018
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2394
PB  - HPC-Europa3, Ljubljana, Slovenija
C3  - European HPC Summit Week 2018 – #EHPCSW
T1  - First-Principles Calculation of Gd - doped BiFeO3
SP  - 28
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2394
ER  - 
@conference{
author = "Ribić, Vesna and Dapčević, Aleksandra and Skorodumova, Natalia and Rečnik, Aleksander and Luković Golić, Danijela and Branković, Zorica and Branković, Goran",
year = "2018",
publisher = "HPC-Europa3, Ljubljana, Slovenija",
journal = "European HPC Summit Week 2018 – #EHPCSW",
title = "First-Principles Calculation of Gd - doped BiFeO3",
pages = "28",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2394"
}
Ribić, V., Dapčević, A., Skorodumova, N., Rečnik, A., Luković Golić, D., Branković, Z.,& Branković, G.. (2018). First-Principles Calculation of Gd - doped BiFeO3. in European HPC Summit Week 2018 – #EHPCSW
HPC-Europa3, Ljubljana, Slovenija., 28.
https://hdl.handle.net/21.15107/rcub_rimsi_2394
Ribić V, Dapčević A, Skorodumova N, Rečnik A, Luković Golić D, Branković Z, Branković G. First-Principles Calculation of Gd - doped BiFeO3. in European HPC Summit Week 2018 – #EHPCSW. 2018;:28.
https://hdl.handle.net/21.15107/rcub_rimsi_2394 .
Ribić, Vesna, Dapčević, Aleksandra, Skorodumova, Natalia, Rečnik, Aleksander, Luković Golić, Danijela, Branković, Zorica, Branković, Goran, "First-Principles Calculation of Gd - doped BiFeO3" in European HPC Summit Week 2018 – #EHPCSW (2018):28,
https://hdl.handle.net/21.15107/rcub_rimsi_2394 .

Structural characterization of Inversion Boundaries in Doped ZnO

Ribić, Vesna; Rečnik, Aleksander; Kokalj, Anton; Dražić, Goran; Podlogar, Matejka; Daneu, Nina; Komelj, Matej; Luković Golić, Danijela; Branković, Zorica; Branković, Goran

(Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade Hydrogen Economy Initiative Serbia, Belgrade, Belgrade, Serbia, 2018)

TY  - CONF
AU  - Ribić, Vesna
AU  - Rečnik, Aleksander
AU  - Kokalj, Anton
AU  - Dražić, Goran
AU  - Podlogar, Matejka
AU  - Daneu, Nina
AU  - Komelj, Matej
AU  - Luković Golić, Danijela
AU  - Branković, Zorica
AU  - Branković, Goran
PY  - 2018
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2434
AB  - Zinc oxide is an important semiconducting material that finds wide ranging applications. There has been considerable interest in ZnO as a low cost, non-toxic and highly stable thermoelectric. In order to enhance its properties for these purposes it is frequently doped with other compounds, usually oxides. Special impact on the improvement of TE properties in doped ZnO have planar defects. So far it  is well known that certain dopants trigger formation of inversion boundary (IB) in wurtzite structure of ZnO. These planar defects are interesting because they affect material properties and morphology of grains. In our study we investigated structure and chemistry of basal plane inversion boundaries in polycrystalline ZnO using conventional transmission electron microscopy and high-resolution electron microscopy. Based on HRTEM images we reconstructed models of IBs that are formed in addition of In, Sn and Sb as dopants. IBs can also be found in pyramidal planes and can be classified as head-to-head (→│←) or tail-to-tail (←│→) configuration depending on the orientation of the polar c-axis. By defining the zinc planes as A, B, or C and the oxygen planes as α, β or γ the perfect ZnO crystal structure has the AαBβAαBβ stacking sequence. Translation obtained from images is compared with three different, so far known, types of the head-to-head IB translations with octahedral coordination of cations at IB-plane: (i) IB with βγβγ׀α׀βαβα stacking of the cation sublattice, as observed with Sb doping1, (ii) IB with αγαγ׀α׀βαβα, as observed with In, Fe and Sn2 doping and (iii) IB with βαβα׀γ׀βαβα as observed with Mn3 doping (Figure 1). The generated models were examined in terms of stability by DFT calculations implemented in the Quantum-Espresso package.
PB  - Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade Hydrogen Economy Initiative Serbia, Belgrade, Belgrade, Serbia
C3  - PROGRAMME AND THE BOOK OF ABSTRACTS / 3rd International Symposium on Materials for Energy Storage and Conversion - mESC-IS 2018
T1  - Structural characterization of Inversion Boundaries in Doped ZnO
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2434
ER  - 
@conference{
author = "Ribić, Vesna and Rečnik, Aleksander and Kokalj, Anton and Dražić, Goran and Podlogar, Matejka and Daneu, Nina and Komelj, Matej and Luković Golić, Danijela and Branković, Zorica and Branković, Goran",
year = "2018",
abstract = "Zinc oxide is an important semiconducting material that finds wide ranging applications. There has been considerable interest in ZnO as a low cost, non-toxic and highly stable thermoelectric. In order to enhance its properties for these purposes it is frequently doped with other compounds, usually oxides. Special impact on the improvement of TE properties in doped ZnO have planar defects. So far it  is well known that certain dopants trigger formation of inversion boundary (IB) in wurtzite structure of ZnO. These planar defects are interesting because they affect material properties and morphology of grains. In our study we investigated structure and chemistry of basal plane inversion boundaries in polycrystalline ZnO using conventional transmission electron microscopy and high-resolution electron microscopy. Based on HRTEM images we reconstructed models of IBs that are formed in addition of In, Sn and Sb as dopants. IBs can also be found in pyramidal planes and can be classified as head-to-head (→│←) or tail-to-tail (←│→) configuration depending on the orientation of the polar c-axis. By defining the zinc planes as A, B, or C and the oxygen planes as α, β or γ the perfect ZnO crystal structure has the AαBβAαBβ stacking sequence. Translation obtained from images is compared with three different, so far known, types of the head-to-head IB translations with octahedral coordination of cations at IB-plane: (i) IB with βγβγ׀α׀βαβα stacking of the cation sublattice, as observed with Sb doping1, (ii) IB with αγαγ׀α׀βαβα, as observed with In, Fe and Sn2 doping and (iii) IB with βαβα׀γ׀βαβα as observed with Mn3 doping (Figure 1). The generated models were examined in terms of stability by DFT calculations implemented in the Quantum-Espresso package.",
publisher = "Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade Hydrogen Economy Initiative Serbia, Belgrade, Belgrade, Serbia",
journal = "PROGRAMME AND THE BOOK OF ABSTRACTS / 3rd International Symposium on Materials for Energy Storage and Conversion - mESC-IS 2018",
title = "Structural characterization of Inversion Boundaries in Doped ZnO",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2434"
}
Ribić, V., Rečnik, A., Kokalj, A., Dražić, G., Podlogar, M., Daneu, N., Komelj, M., Luković Golić, D., Branković, Z.,& Branković, G.. (2018). Structural characterization of Inversion Boundaries in Doped ZnO. in PROGRAMME AND THE BOOK OF ABSTRACTS / 3rd International Symposium on Materials for Energy Storage and Conversion - mESC-IS 2018
Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade Hydrogen Economy Initiative Serbia, Belgrade, Belgrade, Serbia..
https://hdl.handle.net/21.15107/rcub_rimsi_2434
Ribić V, Rečnik A, Kokalj A, Dražić G, Podlogar M, Daneu N, Komelj M, Luković Golić D, Branković Z, Branković G. Structural characterization of Inversion Boundaries in Doped ZnO. in PROGRAMME AND THE BOOK OF ABSTRACTS / 3rd International Symposium on Materials for Energy Storage and Conversion - mESC-IS 2018. 2018;.
https://hdl.handle.net/21.15107/rcub_rimsi_2434 .
Ribić, Vesna, Rečnik, Aleksander, Kokalj, Anton, Dražić, Goran, Podlogar, Matejka, Daneu, Nina, Komelj, Matej, Luković Golić, Danijela, Branković, Zorica, Branković, Goran, "Structural characterization of Inversion Boundaries in Doped ZnO" in PROGRAMME AND THE BOOK OF ABSTRACTS / 3rd International Symposium on Materials for Energy Storage and Conversion - mESC-IS 2018 (2018),
https://hdl.handle.net/21.15107/rcub_rimsi_2434 .

ZnO mesocrystals from solvothermal synthesis

Luković Golić, Danijela; Branković, Zorica; Daneu, Nina; Rečnik, Aleksander; Branković, Goran

(Institut za multidisciplinarna istraživanja, Kneza Višeslava 1, 11000 Belgrade, Serbia, 2013)

TY  - CONF
AU  - Luković Golić, Danijela
AU  - Branković, Zorica
AU  - Daneu, Nina
AU  - Rečnik, Aleksander
AU  - Branković, Goran
PY  - 2013
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2486
AB  - Mesocrystals represent a new class of nanostructured materials, made of crystallographically aligned nanoparticles. Due to their unique structural features they have many physicochemical properties, different from nanoparticulate materials and single crystal materials, which can provide better performance in some applications. Zinc oxide mesocrystals have been synthesized by the solvothermal method at 200 °C during 4 hours from slightly basic (pH = 8) precursor (ethanolic zinc acetate solution in the presence of lithium hydroxide). XRD analysis showed that precursor solution consists of zinc acetate and zinc-hydroxy-acetate. Structural and microstructural properties were analyzed using X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy. ZnO mesocrystals are hexagonal prisms with diameters of 80 – 200 nm and lengths of 100 – 200 nm, but several larger prisms have a hole in the center. Based on characterization results we have discussed the growth mechanism of ZnO mesocrystals. Dipolar nature of ZnO and planar structure of zinc-hydroxy-acetate with free position of the acetate ions between positively charge planes play crucial role in the formation of the ZnO mesocrystals during the solvothermal reaction.
PB  - Institut za multidisciplinarna istraživanja, Kneza Višeslava 1, 11000 Belgrade, Serbia
C3  - 2nd Conference of the Serbian Ceramic Society, June 5-7, 2013, Belgrade, Serbia, 2CSCS-2013
T1  - ZnO mesocrystals from solvothermal synthesis
SP  - 63
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2486
ER  - 
@conference{
author = "Luković Golić, Danijela and Branković, Zorica and Daneu, Nina and Rečnik, Aleksander and Branković, Goran",
year = "2013",
abstract = "Mesocrystals represent a new class of nanostructured materials, made of crystallographically aligned nanoparticles. Due to their unique structural features they have many physicochemical properties, different from nanoparticulate materials and single crystal materials, which can provide better performance in some applications. Zinc oxide mesocrystals have been synthesized by the solvothermal method at 200 °C during 4 hours from slightly basic (pH = 8) precursor (ethanolic zinc acetate solution in the presence of lithium hydroxide). XRD analysis showed that precursor solution consists of zinc acetate and zinc-hydroxy-acetate. Structural and microstructural properties were analyzed using X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy. ZnO mesocrystals are hexagonal prisms with diameters of 80 – 200 nm and lengths of 100 – 200 nm, but several larger prisms have a hole in the center. Based on characterization results we have discussed the growth mechanism of ZnO mesocrystals. Dipolar nature of ZnO and planar structure of zinc-hydroxy-acetate with free position of the acetate ions between positively charge planes play crucial role in the formation of the ZnO mesocrystals during the solvothermal reaction.",
publisher = "Institut za multidisciplinarna istraživanja, Kneza Višeslava 1, 11000 Belgrade, Serbia",
journal = "2nd Conference of the Serbian Ceramic Society, June 5-7, 2013, Belgrade, Serbia, 2CSCS-2013",
title = "ZnO mesocrystals from solvothermal synthesis",
pages = "63",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2486"
}
Luković Golić, D., Branković, Z., Daneu, N., Rečnik, A.,& Branković, G.. (2013). ZnO mesocrystals from solvothermal synthesis. in 2nd Conference of the Serbian Ceramic Society, June 5-7, 2013, Belgrade, Serbia, 2CSCS-2013
Institut za multidisciplinarna istraživanja, Kneza Višeslava 1, 11000 Belgrade, Serbia., 63.
https://hdl.handle.net/21.15107/rcub_rimsi_2486
Luković Golić D, Branković Z, Daneu N, Rečnik A, Branković G. ZnO mesocrystals from solvothermal synthesis. in 2nd Conference of the Serbian Ceramic Society, June 5-7, 2013, Belgrade, Serbia, 2CSCS-2013. 2013;:63.
https://hdl.handle.net/21.15107/rcub_rimsi_2486 .
Luković Golić, Danijela, Branković, Zorica, Daneu, Nina, Rečnik, Aleksander, Branković, Goran, "ZnO mesocrystals from solvothermal synthesis" in 2nd Conference of the Serbian Ceramic Society, June 5-7, 2013, Belgrade, Serbia, 2CSCS-2013 (2013):63,
https://hdl.handle.net/21.15107/rcub_rimsi_2486 .