Pajić, Damir

Link to this page

Authority KeyName Variants
43ce3a2e-c3a7-412f-b3b5-f102c1e9d9fc
  • Pajić, Damir (1)
Projects

Author's Bibliography

The influence of Ti-doping on structural and multiferroic properties of yttrium manganite ceramics

Zemljak, Olivera; Luković Golić, Danijela; Počuča-Nešić, Milica; Dapčević, Aleksandra; Pajić, Damir; Šenjug, Pavla; Branković, Goran; Branković, Zorica

(Institut za multicisciplinarna istrživanja, Belgrade, Serbia, 2022)

TY  - CONF
AU  - Zemljak, Olivera
AU  - Luković Golić, Danijela
AU  - Počuča-Nešić, Milica
AU  - Dapčević, Aleksandra
AU  - Pajić, Damir
AU  - Šenjug, Pavla
AU  - Branković, Goran
AU  - Branković, Zorica
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2211
AB  - Hexagonal (P63cm) yttrium manganite, YMnO3, is a multiferroic material with
ferroelectric transition at TC ≈ 900 K and antiferromagnetic transition at TN ≈ 70 K. Multiferroic behavior attracts a lot of attention because of its potential for
various applications. The application possibilities are limited by large
microcracking and microporosity of YMnO3 ceramics.
In this work, the influence of Ti-doping on structural, ferroelectric and magnetic
properties of YMnO3 ceramics was investigated. YMn1–xTixO3+δ (x = 0, 0.04, 0.08,
0.10, 0.15, 0.20) powders were prepared using sol-gel, polymerization complex
method from citrate precursors, which were then calcinated at 900 °C for 4 h. The
ceramic samples were obtained after sintering for 2 h at: 1400 °C for YMnO3,
YMn0.96Ti0.04O3+δ, YMn0.92Ti0.08O3+δ and YMn0.90Ti0.10O3+δ; 1450 C for
YMn0.85Ti0.15O3+δ; 1470 °C for YMn0.80Ti0.20O3+δ. X-ray diffraction (XRD),
transmission and scanning electron microscopy (TEM and SEM) were used for
structural and microstructural analysis of samples. Ferroelectric measurements of
P(E) loops and leakage currents, and magnetic measurements of zero field cooled
(ZFC) and field cooled (FC) M(T) curves, as well as M(H) curves, were enabled
multiferroic characterization of ceramic samples.
The samples x = 0 and 0.04 are crystallized in a single phased hexagonal
structure, (P63cm), the samples x = 0.08 and 0.10 exhibited the presence of both
hexagonal phase and rhombohedral phase (R3c), and the samples x = 0.15 and 0.20
are crystallized in rhombohedral 1×1×3 superstructure. Ti-doped YMnO3 ceramic
samples showed reduced density of microcracks, and inter- and intragranular pores,
and large increase in relative density (greater than 90 %) for YMn1–xTixO3+δ (x =
0.10, 0.15 and 0.20) samples. Leakage currents for most of doped samples were
lower than leakage current of undoped sample, but the ferroelectric response was not
significantly improved. Doping of YMnO3 with nonmagnetic Ti4+ led to suppression
of antiferromagnetic ordering visible through decrease of the Néel temperature and
Weiss parameter and the appearance of weak ferromagnetism.
PB  - Institut za multicisciplinarna istrživanja, Belgrade, Serbia
C3  - 6th Conference of The Serbian Society for Ceramic Materials June 28-29, 2022 Belgrade, Serbia 6CSCS-2022
T1  - The influence of Ti-doping on structural and multiferroic properties of yttrium manganite ceramics
SP  - 74
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2211
ER  - 
@conference{
author = "Zemljak, Olivera and Luković Golić, Danijela and Počuča-Nešić, Milica and Dapčević, Aleksandra and Pajić, Damir and Šenjug, Pavla and Branković, Goran and Branković, Zorica",
year = "2022",
abstract = "Hexagonal (P63cm) yttrium manganite, YMnO3, is a multiferroic material with
ferroelectric transition at TC ≈ 900 K and antiferromagnetic transition at TN ≈ 70 K. Multiferroic behavior attracts a lot of attention because of its potential for
various applications. The application possibilities are limited by large
microcracking and microporosity of YMnO3 ceramics.
In this work, the influence of Ti-doping on structural, ferroelectric and magnetic
properties of YMnO3 ceramics was investigated. YMn1–xTixO3+δ (x = 0, 0.04, 0.08,
0.10, 0.15, 0.20) powders were prepared using sol-gel, polymerization complex
method from citrate precursors, which were then calcinated at 900 °C for 4 h. The
ceramic samples were obtained after sintering for 2 h at: 1400 °C for YMnO3,
YMn0.96Ti0.04O3+δ, YMn0.92Ti0.08O3+δ and YMn0.90Ti0.10O3+δ; 1450 C for
YMn0.85Ti0.15O3+δ; 1470 °C for YMn0.80Ti0.20O3+δ. X-ray diffraction (XRD),
transmission and scanning electron microscopy (TEM and SEM) were used for
structural and microstructural analysis of samples. Ferroelectric measurements of
P(E) loops and leakage currents, and magnetic measurements of zero field cooled
(ZFC) and field cooled (FC) M(T) curves, as well as M(H) curves, were enabled
multiferroic characterization of ceramic samples.
The samples x = 0 and 0.04 are crystallized in a single phased hexagonal
structure, (P63cm), the samples x = 0.08 and 0.10 exhibited the presence of both
hexagonal phase and rhombohedral phase (R3c), and the samples x = 0.15 and 0.20
are crystallized in rhombohedral 1×1×3 superstructure. Ti-doped YMnO3 ceramic
samples showed reduced density of microcracks, and inter- and intragranular pores,
and large increase in relative density (greater than 90 %) for YMn1–xTixO3+δ (x =
0.10, 0.15 and 0.20) samples. Leakage currents for most of doped samples were
lower than leakage current of undoped sample, but the ferroelectric response was not
significantly improved. Doping of YMnO3 with nonmagnetic Ti4+ led to suppression
of antiferromagnetic ordering visible through decrease of the Néel temperature and
Weiss parameter and the appearance of weak ferromagnetism.",
publisher = "Institut za multicisciplinarna istrživanja, Belgrade, Serbia",
journal = "6th Conference of The Serbian Society for Ceramic Materials June 28-29, 2022 Belgrade, Serbia 6CSCS-2022",
title = "The influence of Ti-doping on structural and multiferroic properties of yttrium manganite ceramics",
pages = "74",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2211"
}
Zemljak, O., Luković Golić, D., Počuča-Nešić, M., Dapčević, A., Pajić, D., Šenjug, P., Branković, G.,& Branković, Z.. (2022). The influence of Ti-doping on structural and multiferroic properties of yttrium manganite ceramics. in 6th Conference of The Serbian Society for Ceramic Materials June 28-29, 2022 Belgrade, Serbia 6CSCS-2022
Institut za multicisciplinarna istrživanja, Belgrade, Serbia., 74.
https://hdl.handle.net/21.15107/rcub_rimsi_2211
Zemljak O, Luković Golić D, Počuča-Nešić M, Dapčević A, Pajić D, Šenjug P, Branković G, Branković Z. The influence of Ti-doping on structural and multiferroic properties of yttrium manganite ceramics. in 6th Conference of The Serbian Society for Ceramic Materials June 28-29, 2022 Belgrade, Serbia 6CSCS-2022. 2022;:74.
https://hdl.handle.net/21.15107/rcub_rimsi_2211 .
Zemljak, Olivera, Luković Golić, Danijela, Počuča-Nešić, Milica, Dapčević, Aleksandra, Pajić, Damir, Šenjug, Pavla, Branković, Goran, Branković, Zorica, "The influence of Ti-doping on structural and multiferroic properties of yttrium manganite ceramics" in 6th Conference of The Serbian Society for Ceramic Materials June 28-29, 2022 Belgrade, Serbia 6CSCS-2022 (2022):74,
https://hdl.handle.net/21.15107/rcub_rimsi_2211 .